Preface 13

Prerequisites 13

Basic Machining Practice Experience 13

Math 14

Motivation 14

Controls Covered 14

Controls other than FANUC 15

Limitations 15

Scope 15

Key Concepts approach 15

Lesson structure 15

Practice, practice, practice! 16

Key Concepts and lessons 16

Enjoy! 17

KNOW THE MACHINING CENTER FROM A PROGRAMMER'S VIEWPOINT 19

Experienced with Conventional (non-CNC) Machine Tools? 19

Lesson 1.1 - Machine Configurations 21

Objectives 21

Introduction 21

Types of CNC turning centers 21

Universal style slant bed turning center 21

Directions of motion (axes) for a universal style

slant bed turning center 23

Live tooling for a universal style slant bed

turning center 24

Other types of CNC turning centers 25

Chucking style slant bed turning center 25

Twin spindle horizontal bed turning centers 26

Sub-spindle style turning centers 27

Vertical single spindle turning centers 28

Twin spindle vertical turning centers 28

Gang style turning centers 29

Swiss-type CNC turning centers (also called

sliding headstock turning centers) 30

Programmable functions of turning centers 30

Spindle 30

Spindle speed 30

Spindle activation and direction 31

Spindle range 31

Feedrate 32

Turret indexing (tool changing) 33

Turret station and offset selection 34

Coolant 34

Other possible programmable functions 34

Tailstock 34

Programmable steady rest 34

Bar feeders and chuck activation 35

Part catcher 35

Tool touch-off probe 35

Automatic tool changing systems 35

Exceptions to X-axis 36

A quick fix 36

Gang style turning centers with cutting tools on

both sides of the spindle centerline 36

Center cutting axis 36

What else might be programmable? 36

Key points for lesson 1.1: 37

Lesson 1.2 - Turning Center Speeds and Feeds 39

Objectives 39

Introduction 39

The machining operation to be performed 39

The material to be machined 40

The material of the cutting tool's cutting edge 40

The two ways to select spindle speed 41

When to use constant surface speed mode 42

When to use rpm mode 42

How fast will the spindle be running when

constant surface speed is used? 43

How fast can the spindle rotate? 43

How to specify a maximum speed for the

constant surface speed mode 44

A potential limitation of constant surface speed

44

The two ways to specify feedrate 45

When to use the feed per revolution mode 45

When to use the feed per minute feedrate mode

45

An example of speed and feed usage 46

Key points for lesson 1.2: 47

Lesson 1.3 - CNC Job Work Flow 49

Objectives 49

Introduction 49

Companies that use CNC turning centers 49

What will you be doing? 50

Flow of the CNC process 50

Study the workpiece drawing 50

Decision is made as to which CNC machine to

use 50

The machining process is developed 51

Tooling is ordered and checked 51

The program is developed 51

Setup and production run documentation is

made 51

Program is loaded into the CNC control's

memory 51

The setup is made 51

The program is cautiously verified 51

Production is run 52

Corrected version of the program is stored for

future use 52

Key points for lesson 1.3: 52

Lesson 1.4 - Visualizing CNC Program Execution 53 Objectives 53

Objectives 53

Introduction 53	Using cutting tools from one job to the next 78
Program make-up 54	Key points for lesson 1.6: 78
Method of program execution 54	
An example of program execution 55	Lesson 1.7 - Setting Geometry Offsets 81
A CNC program to machine the 2.875 diameter	Objectives 81
55	Introduction 81
Sequence numbers 56	Understanding geometry offsets 81
A note about decimal point programming 56	How geometry offsets are instated 83
A decimal point tip 57	The three most common ways to assign program
Other mistakes of omission 57	zero 83
Modal words 57	Using a tool touch-off probe to assign program zero
Initialized words 57	 also called a tool setter (your 1st choice) 84
Letter O or number zero? 57	Stylus use 85
Word order in a command 58	What about center cutting tools? 86
Key points for lesson 1.4: 58	Procedure to use a tool touch-off probe 86
• •	How does it work? 88
Lesson 1.5 - Understanding The Workpiece	What about the wear offset for a cutting tool
Coordinate System 59	that has been probed? 88
Objectives 59	What about tool pressure? 88
Introduction 59	Determining and entering the work shift value 89
Graph analogy 59	A note about the polarity of the work shift
More about polarity 61	value 91
Wisely choosing the program zero point location 62	Using geometry offsets with work shift to assign
In X 62	program zero (your 2nd choice) 91
In Z 62	Understanding the measure function 92
Absolute versus incremental positioning	What if my machine doesn't have the measure
movements 66	function? 94
Another way to specify absolute and incremental	Using geometry offsets without work shift to assign
positioning 67	program zero (your 3rd choice) 96
A decimal point reminder 67	What if my machine doesn't have the measure
We repeat our suggestion about how to specify	function? 97
any real number value: 68	Key points for lesson 1.7: 99
Key points for lesson 1.5: 68	, ,
	Lesson 1.8 - Introduction to Programming Words 101
Lesson 1.6 - Geometry Offset and Work Shift Values	Objectives 101
69	Introduction 101
Objectives 69	Words allowing a decimal point 101
Introduction 69	O (letter O, not zero) 102
Program zero must be assigned independently for	N 102
each cutting tool 70	G 102
Understanding program zero assignment values 71	X 102
What is the zero return position? 71	Y 102
Program zero assignment values 72	Z 102
How do you determine program zero	U 103
assignment values? 73	W 103
Other kinds of cutting tools 75	C 103
Will you really have to determine all of these	R 103
values? 76	I & K 103
Other considerations that affect program zero	F 103
assignment values 76	E 103
How accurate are the program zero assignment	S 104
values? 76	T 104
Trial machining 77	M 104
An advantage of tool touch-off probes 77	P 104
Tool wear 77	Q 104
Replacing dull tools during a production run 77	L 104
1 C C - F	-

EOB (end of block character) 104 / (slash code) 105 G and M-codes 105 G-codes 105 G-code limitation: 105 Option G-codes 105 What does initialized mean? 106 What does modal mean? 106 The most popular G-codes 106 Common M-codes used on a CNC turning center Other M-codes for your machine (found in your machine tool builder's manuals) 108

YOU MUST PREPARE TO WRITE PROGRAMS 109

Preparation and time 109 Preparation and safety 110 Typical mistakes 111 Syntax mistakes 111 Motion mistakes 111 Mistakes of omission 111 Process mistakes 111

Key points for lesson 1.8: 108

Lesson 2.1 - Preparation for Programming 113

Objectives 113 Introduction 113 Prepare the machining process 113 Develop the needed cutting conditions 115 Speed and feed formulae: 115 An example 116 Roughing tools 116 Drilling 116 Finishing tools 117 Chasing threads 117 Cutting conditions can be subjective 117 Do the required math and mark-up the print 118 Other ways to come up with coordinates 120 Marking up the print 121 Doing the math 121 Check the required tooling 124 Plan the work holding set-up 125 Other documentation needed for the job 126 Production run documentation 126 Program listing 127 Is it all worth it? 127 Key points for lesson 2.1: 127

YOU MUST UNDERSTAND THE MOTION TYPES 131

What is interpolation? 131

Lesson 3.1 - Motion Commands 135

Objectives 135 Introduction 135 Motion commonalties 135 Understanding the programmed point of each cutting tool 135 **G00** Rapid motion (also called positioning) 139 What is a safe approach distance? 140 What about feed-off distance? 141 **G01** linear interpolation (straight line motion) 141 Using G01 for a fast feed approach 143 G02 and G03 circular motion commands 144 Specifying a circular motion with the radius word Circular motion with directional vectors (I and K) 146 What's wrong with this picture? 147

YOU MUST KNOW THE COMPENSATION TYPES 151

Key points for lesson 3.1: 149

More on interpreting tolerances 151 How design engineers specify tolerances 152 High and low limit specified 152 Plus or minus tolerance 152 Plus one value, minus another 152 Is a measured workpiece attribute on-size (acceptable)? 153 What if a measured dimension is not on-size (not acceptable)? 153 More on the target value 154 One more consideration - tool wear 154

Lesson 4.1 - Introduction to Compensation 157 **Objectives 157** Introduction: What is compensation and why is it needed? 157 The initial setting for compensation 158 When is trial machining required? 158 What happens as tools begin to wear? 159 What do you shoot for? 159 Why do programmers have to know this? 159 **Understanding offsets 159** Offset organization 159 Offset pages on the display screen 160 How offsets are instated 162 Key points for lesson 4.1: 162

Lesson 4.2 - Geometry Offsets 163

Objectives 163 Introduction 163 Benefits of geometry offsets 163 How geometry offsets work 163 The total program zero assignment value 164 Warning about the machine lock feature: 165 Minimizing program zero assignment effort from job to job 166

So when do you clear geometry offsets? 167 Key points for lesson 4.2: 167

Lesson 4.3 - Wear Offsets 171

Objectives 171

Introduction 171

Which dimension do you choose for sizing? 172 How wear offsets are programmed 172

What about wear offset cancellation? 172

How wear offsets are entered 173

Which is better, INPUT or +INPUT? 175 What if my machine doesn't have a +INPUT soft key? 175

Sizing in a tool after it has just been placed in the turret 176

Sizing in a new tool with trial machining 177

What causes the initial deviation? 177

Dealing with deviations caused by tool wear 178 After a dull tool is replaced 179

What if my machine has a tool touch-off probe? 179

Consistently replacing inserts 179

Consistently indexing inserts 180

Minimizing the need for trial machining 181

Going from job to job 181

When do you clear wear offsets? 182

A more complex example 182

Running the first workpiece – one tool at a time 183

Tool number one: Rough face and turn tool 183 Tool number Two: Finish face and turn tool 183 Tool number Three: 0.125 grooving tool 184 What about the Z position of the groove? 184

Completing the production run 184

Tool number one: Rough face and turn tool 185 Tool number Two: Finish face and turn tool 185 Tool number Three: 0.125 grooving tool 185

A reminder about up-coming jobs 185 A reminder about target values 185

Secondary wear offset applications 185

Flip jobs 186

Two or more critical diameters 186

Unwanted taper 186

Grooving into different areas of the workpiece 186

Key points for lesson 4.3: 186

Lesson 4.4 - Tool Nose Radius Compensation 187

Objectives 187

Introduction 187

Why tool nose radius compensation is required 187
How much deviation are we talking about? 189
Keeping the cutting edge flush with the work
surface at all times 190

When to use tool nose radius compensation 190 Steps to programming tool nose radius compensation 191

Instating tool nose radius compensation 191
Programming motion commands to machine the workpiece 191

Canceling tool nose radius compensation 192

An example program 192

Tool nose radius compensation from a setup person's point of view 193

What if my machine does not have geometry offsets? 195

What if I forget to enter tool nose radius compensation values? 195

What if I enter tool nose radius compensation values into wear offsets? 195

What if I enter tool nose radius compensation values into both the geometry and wear offsets? 195

Programming tool nose radius compensation value entries 195

Another example program showing tool nose radius compensation 196

Key points for lesson 4.4: 198

YOU MUST PROVIDE STRUCTURE TO YOUR PROGRAMS 201

Lesson 5.1 - Introduction to Program Structure 203

Objectives 203

Introduction: 203

Objectives of your program structure 203

Reasons for structuring programs with a strict and consistent format 204

Familiarization 204

Consistency 204

Re-running tools in the program 204

Efficiency limitations 206

Machine variations that affect program structure 207

M-code differences 207

G-code numbering differences 208

Turret variations 208

How do you determine a safe yet efficient index position? 209

What if my machine doesn't have geometry offsets? 210

A reminder about spindle limiting 210

Choosing the appropriate spindle range 211

Which direction do you run the spindle? 211

How do you check what each tool has done? 211

A possible problem with initialized modes 212

How to use our given formats 212

Key points for lesson 5.1: 213

Lesson 5.2 - Structured Program Format 215

Objectives 215

Introduction 215

Program structure 216

Program startup structure 216

Tool startup structure 216

Tool ending structure 216

Program ending structure 217

Understanding the structures 217

G Words 217

M Words 217

Other M Words Related to Turning Centers 218

Other words In The Structure 218

Example program showing structure for turning centers 219

Where are the restart commands? 220

Suggestions for cycle time improvements 220

Combine M-codes in motion commands 221

Minimize spindle dead time 221

Efficiently programming spindle range changes

224

Minimize spindle reversals 225

Key points for lesson 5.2: 225

MASTER SPECIAL FEATURES THAT HELP WITH PROGRAMING 229

Control series differences 230

Lesson 6.1 - One-Pass Canned Cycles 231

Objectives 231

Introduction: 231

Cycle consistencies 231

G90 - One pass turning and boring cycle 232

G92 - One pass threading cycle 233

G94 - One pass facing command 234

Example of **G90** and **G94** 234

Example of G92 command 235

Key points for lesson 6.1: 236

Lesson 6.2 - Rough and Finish Turing and Boring (G70 and G71) 237

Objectives 237

Introduction 237

G71 - Rough turning and boring 237

The two phases of **G71** 238

Understanding **G71** command words 240

P-word (P-word in second line) 240

Q-word (Q-word in second line) 240

U-word (U-word in second line) 241

W-word (W-word in second line) 241

D word (U-word in first line) 241

F-word (F-word in second line) 241

(R-word in second line) 241

FANUC CERT - Turning Center

What about finishing? 241

Example showing ${\bf G71}$ for rough turning and ${\bf G70}$

for finish turning 241

Using G71 for rough boring 244

Limitations of the G71 command 245

No recesses 245

Efficiency 246

Format for two-line multiple repetitive cycles 246

Key points for lesson 6.2: 246

Lesson 6.3 - Other Multiple Repetitive Cycles (**G72**-**G75**) 249

Objectives 249

Introduction 249

G72 - Rough facing 249

Format for two-line multiple repetitive cycles 251

G73 - pattern repeating 251

D word (R word in first G73 command) 252

I-word (U-word in second G73 command) 252

K-word (W-word in second G73 command) 252

Example of G73 pattern repeating 253

Can you use **G73** for castings and forgings? 254

Format for two-line multiple repetitive cycles 255

G74 - peck drilling 255

What if I must clear chips between pecks? 256

Format for two-line multiple repetitive cycles 256

G75 - grooving cycle 257

Key points for lesson 6.3: 258

Lesson 6.4 - Threading Multiple Repetitive Cycle (676) 259

Objectives 259

Introduction 259

Programming G76 259

X-word (X-word in second G76) 260

Z-word (Z-word in second G76) 260

What is thread chamfering? 260

K-word (P-word in second G76 - does not allow

decimal point) 260

D-word (Q-word in second G76) 261

A-word (last two digits of P word in first G76) 261

F-word and E-word (F word in second G76) 261

I-word (R-word in second G76) 262

Q-word 262

(P-word in first G76) 262

(Q-word in first G76) 262

(R-word in first G76) 262

Example program for threading 263

Other notes about threading 264

When possible, thread in the lowest spindle

range 264

Thread in the rpm mode (G97) 264

Watch out for maximum allowable feedrate 264

Thread with thread chamfering turned off 264

Finish the thread before removing workpiece 264

Right hand threads versus left hand threads 264

Offsetting for threading tools 265	G73 288
Start the tool far enough away from the thread	G74 288
being machined 265	G75 288
Minimum depth-of-cut, final pass depth, and	G76 288
number of spring passes 265	Sub-programming differences 289
Disabled or modified control functions during	What about controls that are not made by FANUC?
threading 265	289
Tapered threads 265	G-code differences 289
Multiple start threads 267	
Format for two-line multiple repetitive cycles 268	Lesson 6.7 - Other Special Programming Features 291
What about tapping? 269	Objectives 291
Tap in the rpm mode 269	Introduction 291
Tap in the low range 269	Block delete (also called optional block skip) 291
Use G32 as the motion command for tapping	Applications for block delete 292
269	Another optional stop 292
Use a tension/compression tap holder 269	Trial machining 293
Keep the approach position 0.2 inch from the Z	Warning about block delete applications 294
surface to tap 270	Sequence number (N-word techniques) 294
Key points for lesson 6.4: 270	Eliminating sequence numbers 294
	Using special sequence numbers in program
Lesson 6.5 - Sub-Programming Techniques 271	restart commands 294
Objectives 271	Documenting your programs with messages in
Introduction 271	parentheses 296
The difference between main- and sub- programs	General information about the job 296
271	Tool information 297
Loading multiple programs 272	At every program stop 297
Words used with subprograms 272	To document anything out of the ordinary 297
A quick example 272	For changes made after a dispute 298
Nesting subprograms 274	Automatic corner rounding and chamfering 298
Applications for subprograms 274	Other G-codes of interest 300
Repeated machining operations 274	G04 - Dwell command 300
Control programs 274	Other G-codes 301
Utility applications 275	Key points for lesson 6.7: 301
Example for repeating machining operations -	
multiple identical grooves 275	Appendix: Special Machine Types and Accessories
Example for control program applications - flip jobs	303
277	Introduction 303
Example for utility applications - bar feeder	Work holding and work support devices 303
activation 278	Work holding devices 303
Special notes about M99 280	Three jaw chucks 303
Ending a main program with M99 280	Programmable features of three jaw chucks
Changing the order of program execution with	306
M99 280	Collet chucks 307
What is parametric programming (Custom Macro)?	Work support devices 308
282	Tailstocks 308
Part families 283	The tailstock body 309
User defined canned cycles 283	Tailstock quill 309
Utilities 283	Tailstock center 309
Complex motions and shapes 284	Tailstock alignment problems 310
Key points for lesson 6.5: 285	Programming considerations 310
	Steady rests 310
Lesson 6.6 - Control Model Differences 287	Bar feeders 311
Objectives 287	How a bar feeder works 311
Introduction 287	Workholding considerations 312
G71 287	Styles of bar feeders 312
G72 287	How to program for bar feeders 312

Determining how much to feed the bar 313 The steps to bar feeding 313 The redundancy of bar feed programming 315 When to program the bar feed 315 Ending a bar feed program 315 An example bar feeding program 315 Part catchers 317 Live tooling 318 Features of live tooling turning centers (also called mill/turn or turn/mill machines) 318 Rotating tools 318 Special tool holders 318 Precise control of main spindle rotation 319 Only one way to specify speed and feedrate 319 Hole-machining canned cycles 319 Polar coordinate interpolation 319 Selecting the main spindle mode 319 Programming an indexer 320 Example program for an indexer 321 Programming a rotary axis (C-axis) 322 Angular values 322 Zero return position 322 Rapid versus straight line motion 322 Program zero assignment 323 Absolute versus incremental 323 Canned cycles for hole machining 324 Canned cycle types 324 Words used in canned cycles 325 An example program 325 Understanding polar coordinate interpolation 326

KNOW YOUR MACHINE FROM AN OPERATOR'S

Swiss-type turning centers (also called sliding

Other machine types 330

VIEWPOINT 333

Twin spindle turning centers 330

Sub-spindle turning centers 331

headstock turning centers) 331

Are you only interested in setup and operation? 333 The need for hands-on experience 334

Lesson 7.1 - Tasks Related to Setup and Running Production 335

Objectives 335
Introduction: 335
A CNC job from start to finish 337
Setup documentation 338
Tear down the previous setup and put everything away 339
Gather the components needed to make the setup 339
Make the workholding setup 339
How To Mount Jaws In The Correct Serrations 339

Machining soft jaws during setup 341 Other devices related to work holding setup 344

Assemble cutting tools 344

A reminder about mounting inserts 344 Load cutting tools into the turret and adjust coolant lines 344

Assign program zero for each new tool 344 Enter tool nose radius compensation values (if the programmer uses this feature) 345

Load the CNC program/s 345

Verify the correctness of a new or modified program 345

Verify the correctness of the setup 346 Dry running our example program 347

Cautiously run the first workpiece 347
The most dangerous time 348

Making sure the first workpiece is a good one 348

Machining the first workpiece in our example job 349

Move through the program one tool at a time 351

Upcoming jobs 351

A note about our example job 351

First workpiece inspection 351

Program optimizing 352

Saving corrected version of the program 352

What will you be doing? 352

Production run documentation 353

Remove the previous workpiece 354

Load the next workpiece 355

Activate the cycle 355

Monitor the cycle 355

Clean and de-burr the workpiece 355 Perform specified measurements 356

Make offset adjustments to maintain size for

critical dimensions (sizing) 356

Replace worn tools 356

Clean the machine 357

Preventive maintenance 357

Machine warm-ups 357

Key points for lesson 7.1: 357

Lesson 7.2 - Buttons and Switches on the Operation Panels 359

Objectives 359

Introduction 359

The two most important operation panels 359

The control panel buttons and switches 360

Display screen mode keys 361

Position display pages 362

Program display pages 362

Offset display pages 363

Graph display pages 364

Other display screen modes 364

The keyboard 364

Letter Keys 365

The slash key (/) 365

Number keys 365

Decimal point key 365

CAN key 365

EOB key 365

The input key 365

Cursor control keys 365

Program Editing Keys 365

Reset key 365

The machine panel 366

Power buttons 366

MODE switch 366

CYCLE START button 366

FEED HOLD button 366

FEEDRATE OVERRIDE switch 367

RAPID OVERRIDE switch 367

EMERGENCY STOP button 367

Conditional switches 367

DRY RUN on/off switch 368

SINGLE BLOCK on/off switch 368

BLOCK DELETE on/off switch (also called

optional block skip) 368

OPTIONAL STOP on/off switch 368

Buttons and switches for manual functions 368

Axis jogging controls (continuous jog) 368

Axis jogging controls (incremental jog) 369

Handwheel controls 369

Spindle control 369

Turret index control 369

Indicator lights and meters 369

Spindle rpm and horsepower meters 369

Axis drive-motor horsepower meter 369

Cycle indicator lights 370

Zero return position indicator lights 370

Optional stop indicator light 370

Other buttons and switches on the machine panel

370

Other operation panels on your turning center 370

KNOW THE MODES OF OPERATION 371

Lesson 8.1 - Operation Modes 373

Objectives 373

Introduction: 373

The manual mode switch positions 373

The MDI mode switch position 374

Commanding an MDI zero return 374

The complete procedure to give an MDI

command 374

Commanding an MDI turret index 375

Commanding spindle activation with MDI 375

Other times when MDI is used 375

Can you make motion commands with MDI? 375

The EDIT mode switch position 375

To make a program in memory the active

program (to call up a program) 376

To enter a new program 376

What if I make a mistake when typing? 377

The program operation mode 377

To run the active program from the beginning

377

Key points for lesson 8.1: 378

UNDERSTAND THE IMPORTANCE OF PROCEDURES 379

Lesson 9.1 - Operation Procedures 381

Objectives 381

Introduction 381

Develop your own operation handbooks 381

Manual procedures: 381

MDI Procedures 381

Program Manipulation Procedures 381

Setup Procedures 382

Program Running Procedures 382

Blank procedure form 383

Sample operation handbook (Levil certification cart

- lathe) 384

Manual Procedures 384

To start the machine 384

To do a zero return 384

To index the turret 384

To start spindle 384

To jog axes (using continuous jog) 384

To jog axes (using incremental jog) 384

To use the handwheel 385

To set axis displays 385

To enter wear offsets 385

MDI Procedures 385

To execute an MDI command 385

Program Manipulation Procedures 386

To get ready to edit programs 386

To show a directory of programs 386

To show a directory of programs 360

To call up a program from with the CNC memory (make it the active program) 386

To load programs 386

To delete programs 386

To search within a program 387

To alter, insert, & delete 387

To save programs 388

To use background edit 388

Setup Procedures 388

To mount jaws 388

To measure and enter program zero

assignment values 388

To measure and enter work shift value 389

Program Running Procedures 389

To run the program (in normal production - no

verification techniques) 389

To rerun tools 389

To do a free flowing dry run 390

To do an normal air cutting run 390

To run the first workpiece 390

To cancel a cycle 391

To clear an alarm 391

Key points for lesson 9.1: 391

YOU MUST KNOW HOW TO SAFELY VERIFY PROGRAMS 393

Safety priorities 393

Operator safety 393

Machine tool safety 394

Workpiece safety 394

Lesson 10.1 - Program Verification 395

Objectives 395

Introduction 395

Two more procedures 395

Canceling the CNC cycle 395

To cancel the cycle 396

To re-run a tool 396

Verifying a job that contains mistakes 398

Loading the program 400

The dry run to check for setup mistakes 401

Cautiously running the first workpiece 402

Review of program running procedures 403

Program Running Procedures 403

To do a free flowing dry run 403

To do an normal air cutting run 403

To run the first workpiece 403

To rerun tools 404

To run the program (in normal production - no

verification techniques) 404

To cancel a cycle 404

To clear an alarm 404

Key points for lesson 10.1: 404

Index 405

Quick Reference Sheet 411